The generator matrix

 1  0  0  1  1  1 X^2+X  X  1  1  1 X^2 X^2  1  0  1  1  1  X  0  1 X^2 X^2+X  1  1  1  1  X X^2+X  1 X^2  1  X  1  1 X^2 X^2+X  1 X^2  1  1  1 X^2+X  1  1  0 X^2+X X^2  X X^2+X  1  0  1  1  1  X  1  1  1  1 X^2+X  X X^2  X X^2  1  1 X^2+X  1  0  1  1 X^2+X
 0  1  0  0  1 X+1  1 X^2 X^2+X+1 X+1 X^2+X  1  1 X^2  0  0 X^2+1  X  1  1  1  1  0  X X^2+X+1 X^2+1 X^2+X  1  X  1  1 X^2+X  1  X X^2+1  1  1  X  X X^2+1  0  0  1 X^2 X+1  0  1  1  1 X^2  0  1 X+1  X X^2+X+1  1 X^2 X^2+X+1 X^2+X X^2+X X^2  1  1  X  1  0  0 X^2+X X+1  1 X+1 X+1  1
 0  0  1  1  1 X^2  1  1 X+1 X^2+X X^2+1 X^2+1 X^2+X  X  1 X^2  1  1  1 X^2 X^2  1  1 X+1 X^2+X X^2+X+1 X^2  0  1  0 X+1 X^2 X^2 X+1 X^2+X X^2+X X^2+X+1 X^2+1  1  1  X  0 X^2 X^2+X+1  X  1  X  1 X^2  1  X  X X^2+X X+1 X^2+X+1  1  1 X^2+1 X^2+1 X^2  1  1 X+1  1 X^2+X+1 X^2 X^2+1  1 X^2+1 X^2  0  1 X^2+X
 0  0  0  X X^2+X  0  X  X X^2+X  0 X^2+X X^2+X  0  0 X^2+X X^2+X X^2  0 X^2 X^2+X  X X^2  0  0 X^2 X^2  X  X X^2 X^2  X X^2  0  X X^2+X  0  0  0  X  0 X^2  0 X^2  X X^2+X  0 X^2+X X^2 X^2+X X^2 X^2+X  X  X X^2  0  X X^2+X  X  X X^2+X  X  0 X^2+X X^2  X X^2+X X^2  X X^2+X X^2 X^2  X X^2
 0  0  0  0 X^2  0  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2  0  0  0 X^2  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2  0  0  0  0 X^2 X^2  0  0 X^2 X^2 X^2 X^2  0 X^2  0  0 X^2 X^2 X^2 X^2  0 X^2  0 X^2  0  0  0 X^2  0 X^2  0 X^2 X^2  0  0  0 X^2 X^2 X^2  0  0 X^2  0 X^2  0

generates a code of length 73 over Z2[X]/(X^3) who�s minimum homogenous weight is 67.

Homogenous weight enumerator: w(x)=1x^0+198x^67+334x^68+364x^69+407x^70+384x^71+402x^72+382x^73+344x^74+238x^75+215x^76+224x^77+134x^78+124x^79+140x^80+72x^81+40x^82+40x^83+23x^84+6x^85+3x^86+8x^87+5x^88+6x^89+2x^93

The gray image is a linear code over GF(2) with n=292, k=12 and d=134.
This code was found by Heurico 1.16 in 18.4 seconds.